skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nazarov, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The tail of distribution (i.e., the measure of the set { f ≥ x } \{f\ge x\} ) is estimated for those functions f f whose dyadic square function is bounded by a given constant. In particular, an estimate following from the Chang–Wilson–Wolf theorem is slightly improved. The study of the Bellman function corresponding to the problem reveals a curious structure of this function: it has jumps of the first derivative at a dense subset of the interval [ 0 , 1 ] [0,1] (where it is calculated exactly), but it is of C ∞ C^\infty -class for x > 3 x>\sqrt 3 (where it is calculated up to a multiplicative constant). An unusual feature of the paper consists of the usage of computer calculations in the proof. Nevertheless, all the proofs are quite rigorous, since only the integer arithmetic was assigned to a computer. 
    more » « less
  2. null (Ed.)
    Abstract Let $$1\leq p \leq q <\infty $$ and let $$w \in \mathbb{C}$$. Weissler conjectured that the Hermite operator $$e^{w\Delta }$$ is bounded as an operator from $$L^{p}$$ to $$L^{q}$$ on the Hamming cube $$\{-1,1\}^{n}$$ with the norm bound independent of $$n$$ if and only if $$\begin{align*} |p-2-e^{2w}(q-2)|\leq p-|e^{2w}|q. \end{align*}$$It was proved in [ 1], [ 2], and [ 17] in all cases except $$2<p\leq q <3$$ and $$3/2<p\leq q <2$$, which stood open until now. The goal of this paper is to give a full proof of Weissler’s conjecture in the case $p=q$. Several applications will be presented. 
    more » « less